Arabic Handwritten: Pre-Processing and segmentation

نویسندگان

  • Makki Maliki
  • Naseer Al-Jawad
  • Harin Sellahewa
  • Sabah Jassim
چکیده

This paper is concerned with pre-processing and segmentation tasks that influence the performance of Optical Character Recognition (OCR) systems and handwritten/printed text recognition. In Arabic, these tasks are adversely effected by the fact that many words are made up of sub-words, with many sub-words there associated one or more diacritics that are not connected to the sub-word’s body; there could be multiple instances of sub-words overlap. To overcome these problems we investigate and develop segmentation techniques that first segment a document into sub-words, link the diacritics with their sub-words, and removes possible overlapping between words and sub-words. We shall also investigate two approaches for pre-processing tasks to estimate sub-words baseline, and to determine parameters that yield appropriate slope correction, slant removal. We shall investigate the use of linear regression on sub-words pixels to determine their central x and y coordinates, as well as their high density part. We also develop a new incremental rotation procedure to be performed on sub-words that determines the best rotation angle needed to realign baselines. We shall demonstrate the benefits of these proposals by conducting extensive experiments on publicly available databases and in-house created databases. These algorithms help improve character segmentation accuracy by transforming handwritten Arabic text into a form that could benefit from analysis of printed text.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Component-based Segmentation of Words from Handwritten Arabic Text

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words se...

متن کامل

Acquisition Segmentation Feature Extraction Classification Post Processing Pre - Processing

Arabic script is the third most widely used writing system after Latin and Chinese, but research in Arabic Optical Character Recognition (OCR) is still nascent in comparison to Latin script. Arabic script is inherently cursive in nature, therefore techniques developed for other scripts are generally inappropriate for Arabic. In this paper we present recent progress in the field of Handwritten A...

متن کامل

A New Approach for Arabic Handwritten Postal Addresses Recognition

In this paper, we propose an automatic analysis system for the Arabic handwriting postal addresses recognition, by using the beta elliptical model. Our system is divided into different steps: analysis, pre-processing and classification. The first operation is the filtering of image. In the second, we remove the border print, stamps and graphics. After locating the address on the envelope, the a...

متن کامل

Rotation and Scale Invariant Feature Extraction Using Complex Zernike Moments Forfarsiand Arabic Handwriting Character

Analyzing Farsi and Arabic handwritten documents is one area in image processing whose target is to transform picture documents into symbolic form. This transformation is conducted o make rapid and easy saving, improvements, retrieval, reuse, searching and transferring documents. Analyzing documents is performed in five stages: pre-processing, segmentation representation, recognition and post-p...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012